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ABSTRACT 
In this project, a software was developed to create aesthetically pleasing images using computer 
vision and PixelMath, an image processing software. This project uses genetic algorithms, which 
is a process of applying mutations, crossover, and aesthetic fitness criteria over multiple 
generations, to create the most aesthetically pleasing images.  
 

SUMMARY  
Genetic algorithms are based upon Darwin’s Theory of Natural Selection, which states that 
organisms that have a higher fitness, or ability to survive and reproduce, will have a higher 
chance of reaching the next generation. Through random events like mutation and crossover, 
some have higher fitness than others, and if a mutation happens to create a higher fitness 
individual, that mutation is likely to be passed down throughout generations. This type of AI 
process tries to mimic a natural occurrence, which results in individuals that adapt to the 
conditions over time. In this project, genetic algorithms and related techniques are used to 
automatically come up with images that are better and better from an aesthetic "fitness" 
criterion. 
 
In this project, we first generate an initial set of images, each image being represented in as tree 
structure. Then a mutation is applied on all these images by choosing a random non-terminal 
from the original tree, calling the formula generation specifically on that non-terminal and 
replacing the subtree under the chosen non-terminal with a new formula. A similar process 
occurs with crossover except there are two trees (two parents) that combine to make one child 
tree. A fitness criteria is applied at each stage by getting the RGB values of each pixel and doing 
calculations such as standard deviation, mean, median, colors present in the photo, and mode. 
The highest fitness images are allowed to pass onto the next generation and this process 
repeats. Each of these processes will be discussed in more detail later 
 

  



SOFTWARE 
Program Flowchart 
The flowchart displayed in Figure 1 shows the genetic algorithm process used in this software. 

 
 

 

Data Structure 
 
Each image has four critical parts that are used throughout the program:  
 

1. Tree Data Structure: The tree is essential in order to successfully alter a formula through 
mutations and cross-overs. To avoid parsing through a formula and converting it to non-
terminals each time, the formula is stored as a tree.  

Figure 1: A description of how the genetic algorithm process is implemented in the program.  



2. Formula: The formula is stored so that the image can be generated at any time. Grammar 
based formula generation is used where non-terminals (e.g. E225, P, E1P, EE, etc.) 
represent symbols that can be expanded on and terminals represent symbols that can’t 
be expanded upon.  

3. Dictionary: The dictionary is used to maintain the counts of each of the non-terminals. 
This is important when adding nodes to the tree because there could be multiple 
instances of a single non-terminal. Each non-terminal in the tree is stored with a number 
using the counts in the dictionary such as E1P 0 so that two instances of E1P, for 
example, can be distinguished from one another. 

4. Fitness Value: The fitness value is stored along with this information so that deciding if an 
image has high enough fitness to move onto the next generation is easy because each 
image’s fitness is easily accessible.  

 

Initialization 
 
Using the tools available in PixelMath and grammar-based formula generation, the initial set of 
images is created. Just like a sentence in English, each part of the formula can be written as 
parts, similar to how a sentence in English requires a noun phrase and a verb phrase. The parts 
that can be expanded on are called non-terminals. The non-terminals present in this code are P, 
E255, E1P, EE and EI, which either represent a terminal, such as 255/x or y, or lead to more 
formula generation such as E1P + E1P. Each non-terminal represents a function whose range will 
be within certain values. For example, E255 represents a function that only returns values in 
between 0 and 255.  
 
First, a production string is defined which has a non-terminal on the left-hand side and its value 
on the right-hand side. There are multiple such entries per each non-terminal. One example 
entry would be E1P ::= abs(EE), where ::= is used to parse the left and right hand sides.  
 
Now, formula generation will be discussed, which happens recursively. Among the choices for 
what each non-terminal is equal to, the formula generation randomly chooses one of these 
options. Next, for each element in the right-hand side equivalent of the non-terminal, it either 
calls the formula generation again with the non-terminal present in the right-hand side, or adds 
the terminal to the output items. While this is happening, each time that a non-terminal is 
detected, it is added to a tree that has its root node defined as a P. P means pictures and it is the 
root node because it is present in every formula. As the formula is being converted to a tree, a 
dictionary is being added to that contains each non-terminal as the key and its count as the 
value. There is also a depth counter, which restarts the formula generation if it goes on too long. 
At the end of this process, an image is fully initialized and is ready to run through generations.  
 
 
 
 
 
 



 
One of the automatically generated image is shown in Figure 2: 
 

Example Image (resembles aurora borealis) 

 
 

Mutation and Crossover 
 
The mutation function is necessary to ensuring that there is diversity between pictures. This 
allows for possible improvement in pictures.  
 
First, a copy of the input tree is created to avoid changing the original tree. A non-terminal 
present in this tree is randomly chosen using the counts present in the dictionary and the 
random module. Then, the formula generation is called with that non-terminal, resulting in a 
smaller subtree that needs to be added to the main one.  
 
The children nodes to the non-terminal in the copy tree are all removed. By traversing the tree, 
the nodes present in the subtree are all added to the main tree. Finally, the image is updated by 
adjusting the counts of each non-terminal in the dictionary and changing the naming of each 
non-terminal in the tree.  
 

Figure 2 
Formula: hsv(log(y), abs(cos(x)), log(y)) 

This is one of the formula generated image. The non-terminals were replaced by terminals in this formula. 
For example, the E1P in this generation was replaced by log(y), and so on. 

 



The cross-over function is very similar to mutation. The only difference is that there are two 
input trees. One of these input trees is chosen to be the base and the other to be the 
replacement. A new combined dictionary is created which has the counts of each non-terminal. 
Then, a random non-terminal is chosen using this combined dictionary.  
 
Finally, that non-terminal is found in the second tree, and the process that happened in 
mutation is mimicked.  
 
In Figure 3 is the original image synthesized by the formula generation. The mutated and 
crossover version of the same image are shown in Figures 4 and 5 respectively. 
 
An experiment is also shown in Figure 6 where the picture is a solid lime green color with a very 
low fitness. As mutations occur, the image from the past generation and the mutated one are 
compared. The better one moves on and as is visible from the fitness in the title of the image, 
the fitness keeps on increasing.  

 
 

 
 

 
Crossover Image 

 
 

 
Mutated Image 

 

 
Original Image 

 
 
 
 

Figure 3 
hsv(log(y),cos(x)*sin(y),log(y)) 

This is one of the original images 
generated by initialization. 

Figure 4 
hsv(sin(x)*cos(y), cos(x)*sin(y), log(y)) 

After a mutation is applied on the 
picture, the picture looks very different. 
The E1P non-terminal, which was log(y) 
originally was replaced by sin(x)*sin(y). 

Figure 5 
hsv(abs(cos(y)),cos(x)*sin(y), log(y)) 
In this crossover, the log(y) term is 

replaced by (abs(cos(y)). This term was 
present in the second parent and was 

therefore present in the child. 



Effect of Mutating a Simple Image 

 
Figure 6 

This was an experiment to see the effect of mutation. The fitness starts from 12 and goes all the way up to 46. 
After 9 generations, the image at the end has many more layers and much higher fitness than the original. 

Some generations in between resulted in bad mutations, or ones that lowered the fitness, which resulted in the 
same images twice. These weren’t displayed so that the full transition is displayed.  

 

Fitness 
 
The fitness function is essential to any genetic algorithm. The fitness function takes an input list 
of images, computes the RGB values, and uses statistics from the fitness file created to give a 
numeric value to the beauty of the picture.  
 
The statistics computed are mean, median, mode, most, standard deviation, and colors present. 
The mean is the average of all the RGB values of each pixel. The median returns the middle value 
in the dataset of RGB values when arranged in ascending order. The mode returns the element 
that occurs the most, and most returns the count of how many times that element appears. 
Standard deviation measures the amount of variation in the data set and is calculated through 
the standard formula. Finally, colors present measures how many pixels fall under each color 
range. Based on how many pixels are found in each range, the picture either contains the color 
or doesn’t.  
 
Based on the value that each of these functions returns, there is also a function that computes 
how much fitness value each statistic gives. For example, colors present was decided to have 
more weightage than mode and most, since they are related, so colors present accounts for 
about 40% of the fitness value. 
 
Finally, the fitness function changes the fitness value associated with the picture (the 4th element 
present in the list) to match the one it just computed.  
 
Below in Figure 7 is a table of an experiment that was conducted where the program was run for 
4 generations. In addition to the top 6 out of 20 (high fitness) images to move onto generations, 
the middle six images (average fitness) and the last 6 images (low fitness) were also taken. This 
experiment shows that over generations, no matter what the initial population is, the fitness 
increases and better images are produced. In the low fitness images, there was an 80-100% 



increase in average fitness value after just 4 generations. The lower the fitness of the base 
images, the higher the percent increase in average fitness was achieved.  

 
Average Fitness Values After 4 Generations for Varying Initial Populations 

 Initial 
Gen. 1 

Mutation 
Gen. 1 

Crossover 
Gen. 2 

Mutation 
Gen. 2 

Crossover 
Gen. 3 

Mutation 
Gen. 3 

Crossover 
Gen. 4 

Mutation 
Gen. 4 

Crossover 

Images 0-6 
(high fitness) 

38.66 44.33 45.00 45.66 46.00 46.33 47.00 46.66 46.66 

Images 7-13 
(average 
fitness) 

28.33 30.00 31.33 32.66 35.33 35.66 36.00 36.33 36.00 

Images 14-20 
(low fitness) 

16.33 19.66 29.66 32.33 32.33 33.00 34.00 33.66 33.00 

 

Generations 
 
It was decided to increase genetic diversity, the mutated version of a picture and the original 
picture will be compared. The higher fitness one will move onto the next generation. This is 
because sometimes, if a picture has a really high fitness, say 46, and the mutation causes it to 
drop to 42, it is still a good picture. The problem is then a different picture with fitness 40 is 
eliminated, and then all the pictures in the end look very similar since a mutation doesn’t make 
too big of a change. A similar decision was made in crossover. It was decided that only one child 
of a base tree can move onto the next generation. 
 
Also, initially, to ensure that the generations weren’t applied onto low fitness images, a base set 
of images of 20 was refined down to 6. These were the ones that had mutations, fitness, and 
cross-over applied to them.  
 
The user has the option to control how many generations happen. Also, after all the generations 
are done, the 6 original images and the 6 modified images are displayed, with an O and M in the 
titles signifying modified and original.  
 
 

Figure 7 
This table shows the average fitness values for the mutated and crossover generations after 4 generations. 

There is a direct correlation between lower initial fitness value and a greater percent increase in 
average fitness in the last generation. There is some variation because the crossover doesn’t 
necessarily result in a higher fitness after that generation. In crossover, the generation isn’t 

compared to the previous so the average fitness can decrease. 

 



 

Example of an Interesting Piece of Code 
 
Typically, when developing genetic algorithms, programming cross-over is the hardest part of the 
program. When I was thinking of the data structure to use to store formulas to be edited in 
mutations, I realized that a tree structure would be the most beneficial even if it would be hard 
to code at first. In the code for mutation, it allowed for choosing a random non-terminal and 
removing the subtree underneath it straightforward. As a natural extension, it made coding 
cross-over very simple, made the code understandable, and easy to read.  
 
Now, I will analyze this code. Here I just want to display that piece of code from the mutation 
function: 
 
[code begins] 
random_choice_number=random_choice+" " + str(extra_number) 
 for node in mutated_tree.traverse("P"): 
  for child in mutated_tree[random_choice_number].children: 
   mutated_tree.remove_node(child, random_choice_number) 
tree2=Tree() 
 node2=tree2.add_node(random_choice_number)  
 non_terminal_dictionary2 = {"P":0, "E1P":0, "EI":0, "EE":0, "E255":0, "COND":0}  
 formula2=gen_phrase(random_choice_number,node2, tree2, non_terminal_dictionary2) 
 tree2_list=[tree2, formula2, non_terminal_dictionary2, 0] 
for node in tree2.traverse(random_choice_number): 
  for child in tree2[node].children: 
   mutated_tree.add_node(child, node) 
[code ends] 
 
Here, random_choice represents the random non-terminal that was chosen to be replaced. First, 
a random number, extra_number, is added to random_choice to match the node that will be 
present on the tree. Next, while traversing the node, all the children of the 
random_choice_number, the random non-terminal, are removed. 
 
Then, a new tree is initialized with its root node as the random non-terminal. It also has a 
dictionary created and then is called into formula generation with that non-terminal. This way, a 
new subtree is created which is our mutated version. This is what the original tree needs to be 
replaced with. 
 
Finally, the subtree is traversed through and every node that is detected on this tree is added to 
the mutated tree that is returned. 
 
To code cross-over, instead of generating the formula from the chosen random non-terminal, I 
used the non-terminal (and the subtree underneath) from the second parent as a replacement.  



 

Key Learnings 
 
This project enabled me to learn many invaluable lessons that I wouldn’t have learned 
otherwise: 

• Power of Artificial Intelligence: I learned about what you can do with AI and the 
limitations of traditional programming. The genetic algorithm that I implemented is a 
learning system because it takes information from one generation onto the next and is 
learning.   

• Efficient program: At first, while running the fitness function, I was running a separate 
loop through all the pixels (65536 of them) each time a statistic had to be generated. I 
optimized this strategy by condensing everything into one loop and that made the 
program run much faster.   

• Right data structure: I learned about data structures like trees and how choosing the right 
way to store information can make coding later much easier. Had I not chosen to use a 
tree structure, it would’ve been almost impossible to perform a cross over function 
correctly. 

• Art is subjective: I originally created a second version of the fitness function, which had 
multiple changes such as giving 8 colors a lower fitness to avoid completely rainbow like 
pictures. This ended up creating worse pictures, and this taught me to remember that 
this is art and not a science. Sometimes creating a fitness algorithm that is correct from a 
mathematical standpoint may not translate into the most beautiful pictures.  

• Importance of Documentation: I learned of the importance of documentation and 
readability, for the both the programmer and others. While reading code, it is sometimes 
hard to interpret exactly what the programmer aimed to do, and it is helpful to 
document exactly what happened at each step so it is easy for someone who knows 
nothing about your code to understand it. It is also helpful for debugging because the 
programmer can pinpoint which area of code is creating issues. 

 

  



CONCLUSION 
 
After running the program for multiple generations, I was ending up with some beautiful images. 
Below in Figures 8,9, and 10, I have some instances of running the program over several 
generations. In each set, the first set of pictures is the initial set of images, the next 6 are the last 
mutated generation, and the bottom 6 images are the final images after the last crossover.  
 
In some cases, I observed that over the generations, some images remain the same. This is 
because the original image had such high fitness that the mutations and the crossover couldn’t 
create an image with higher fitness.  
 
I also noticed that over generations, the fitness value of some images kept on getting higher and 
higher, and eventually these images reached such a high fitness value that they wouldn’t be 
replaced by its changed version.   

Image Set #1 (Number of generations: 3) 

 
Figure 8 

The third image in this set has all three of its forms the exact same, meaning that this image had a high fitness 
originally and the original picture was chosen over the other ones each time. The last image was consistently 
mutated and had cross-over applied that changed the picture, meaning that according to the fitness criteria, it 
is getting much better over generations. 



Image Set #2 (Number of generations: 10) 

 
Figure 9 

In the fourth image, the two colors present didn’t give the picture a high enough fitness, so when a version with 
more colors came from the cross-over, that was preferred. First image was consistently mutated to create an 
end product that had high fitness. These images ended up to be nice because this was run for 10 generations. 

Image Set #3 (Number of generations: 4) 

 
Figure 10 

The third image demonstrates a good illustration of cross-over. The cross over image has the same gradient of 
the original, but the pattern was added from the other parent of the child. Some of the images like the fourth 
and sixth one remained largely the same, but the other three were mutated some each generation to create an 
end product that was much different than the original. 



Cool Image 1: 
 
 
 
 

 
 
 
 
 
 
 
 

 

Cool Image #2 
 
 
 
 
 

 

 
 
 
 
 

 

         Figure 11 
Formula: if log(x)>sin(x) then if tan(x)>cos(y) then 255*(tan(x)*tan(y))+abs(cos(x)) else rgb(y/h*255, cos(x)*sin(y)*255, 

log(y)*255) else hsv(log(y), cos(x)*sin(y), sin(x) *cos(y)) 
This is one of the cool images that comes from a complex formula. The rgb and hsv contributed to the color gradient that was 

formed while the tan(x)*tan(y) term contributed to the cool triangular like pattern that was formed on the picture. The log 
function also allowed for the dark color in the bottom as log quickly accelerates and creates a different spectrum of colors.  

  Figure 12 
Formula: hsv(x/w, cos(x)*sin(y), log(y)) 

This picture is a good illustration of how a simple formula can lead to very cool looking image. The diamond like repeating pattern 
comes from the trigonometric functions and the wide variety of colors from the log. 
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